Struct darknet::ffi::layer
[−]
[src]
#[repr(C)]pub struct layer { pub type_: LAYER_TYPE, pub activation: ACTIVATION, pub cost_type: COST_TYPE, pub forward: Option<unsafe extern "C" fn(arg1: layer, arg2: network)>, pub backward: Option<unsafe extern "C" fn(arg1: layer, arg2: network)>, pub update: Option<unsafe extern "C" fn(arg1: layer, arg2: update_args)>, pub forward_gpu: Option<unsafe extern "C" fn(arg1: layer, arg2: network)>, pub backward_gpu: Option<unsafe extern "C" fn(arg1: layer, arg2: network)>, pub update_gpu: Option<unsafe extern "C" fn(arg1: layer, arg2: update_args)>, pub batch_normalize: c_int, pub shortcut: c_int, pub batch: c_int, pub forced: c_int, pub flipped: c_int, pub inputs: c_int, pub outputs: c_int, pub nweights: c_int, pub nbiases: c_int, pub extra: c_int, pub truths: c_int, pub h: c_int, pub w: c_int, pub c: c_int, pub out_h: c_int, pub out_w: c_int, pub out_c: c_int, pub n: c_int, pub max_boxes: c_int, pub groups: c_int, pub size: c_int, pub side: c_int, pub stride: c_int, pub reverse: c_int, pub flatten: c_int, pub spatial: c_int, pub pad: c_int, pub sqrt: c_int, pub flip: c_int, pub index: c_int, pub binary: c_int, pub xnor: c_int, pub steps: c_int, pub hidden: c_int, pub truth: c_int, pub smooth: f32, pub dot: f32, pub angle: f32, pub jitter: f32, pub saturation: f32, pub exposure: f32, pub shift: f32, pub ratio: f32, pub learning_rate_scale: f32, pub clip: f32, pub softmax: c_int, pub classes: c_int, pub coords: c_int, pub background: c_int, pub rescore: c_int, pub objectness: c_int, pub joint: c_int, pub noadjust: c_int, pub reorg: c_int, pub log: c_int, pub tanh: c_int, pub mask: *mut c_int, pub total: c_int, pub alpha: f32, pub beta: f32, pub kappa: f32, pub coord_scale: f32, pub object_scale: f32, pub noobject_scale: f32, pub mask_scale: f32, pub class_scale: f32, pub bias_match: c_int, pub random: c_int, pub ignore_thresh: f32, pub truth_thresh: f32, pub thresh: f32, pub focus: f32, pub classfix: c_int, pub absolute: c_int, pub onlyforward: c_int, pub stopbackward: c_int, pub dontload: c_int, pub dontsave: c_int, pub dontloadscales: c_int, pub temperature: f32, pub probability: f32, pub scale: f32, pub cweights: *mut c_char, pub indexes: *mut c_int, pub input_layers: *mut c_int, pub input_sizes: *mut c_int, pub map: *mut c_int, pub rand: *mut f32, pub cost: *mut f32, pub state: *mut f32, pub prev_state: *mut f32, pub forgot_state: *mut f32, pub forgot_delta: *mut f32, pub state_delta: *mut f32, pub combine_cpu: *mut f32, pub combine_delta_cpu: *mut f32, pub concat: *mut f32, pub concat_delta: *mut f32, pub binary_weights: *mut f32, pub biases: *mut f32, pub bias_updates: *mut f32, pub scales: *mut f32, pub scale_updates: *mut f32, pub weights: *mut f32, pub weight_updates: *mut f32, pub delta: *mut f32, pub output: *mut f32, pub loss: *mut f32, pub squared: *mut f32, pub norms: *mut f32, pub spatial_mean: *mut f32, pub mean: *mut f32, pub variance: *mut f32, pub mean_delta: *mut f32, pub variance_delta: *mut f32, pub rolling_mean: *mut f32, pub rolling_variance: *mut f32, pub x: *mut f32, pub x_norm: *mut f32, pub m: *mut f32, pub v: *mut f32, pub bias_m: *mut f32, pub bias_v: *mut f32, pub scale_m: *mut f32, pub scale_v: *mut f32, pub z_cpu: *mut f32, pub r_cpu: *mut f32, pub h_cpu: *mut f32, pub prev_state_cpu: *mut f32, pub temp_cpu: *mut f32, pub temp2_cpu: *mut f32, pub temp3_cpu: *mut f32, pub dh_cpu: *mut f32, pub hh_cpu: *mut f32, pub prev_cell_cpu: *mut f32, pub cell_cpu: *mut f32, pub f_cpu: *mut f32, pub i_cpu: *mut f32, pub g_cpu: *mut f32, pub o_cpu: *mut f32, pub c_cpu: *mut f32, pub dc_cpu: *mut f32, pub binary_input: *mut f32, pub input_layer: *mut layer, pub self_layer: *mut layer, pub output_layer: *mut layer, pub reset_layer: *mut layer, pub update_layer: *mut layer, pub state_layer: *mut layer, pub input_gate_layer: *mut layer, pub state_gate_layer: *mut layer, pub input_save_layer: *mut layer, pub state_save_layer: *mut layer, pub input_state_layer: *mut layer, pub state_state_layer: *mut layer, pub input_z_layer: *mut layer, pub state_z_layer: *mut layer, pub input_r_layer: *mut layer, pub state_r_layer: *mut layer, pub input_h_layer: *mut layer, pub state_h_layer: *mut layer, pub wz: *mut layer, pub uz: *mut layer, pub wr: *mut layer, pub ur: *mut layer, pub wh: *mut layer, pub uh: *mut layer, pub uo: *mut layer, pub wo: *mut layer, pub uf: *mut layer, pub wf: *mut layer, pub ui: *mut layer, pub wi: *mut layer, pub ug: *mut layer, pub wg: *mut layer, pub softmax_tree: *mut tree, pub workspace_size: usize, }
Fields
type_: LAYER_TYPE
activation: ACTIVATION
cost_type: COST_TYPE
forward: Option<unsafe extern "C" fn(arg1: layer, arg2: network)>
backward: Option<unsafe extern "C" fn(arg1: layer, arg2: network)>
update: Option<unsafe extern "C" fn(arg1: layer, arg2: update_args)>
forward_gpu: Option<unsafe extern "C" fn(arg1: layer, arg2: network)>
backward_gpu: Option<unsafe extern "C" fn(arg1: layer, arg2: network)>
update_gpu: Option<unsafe extern "C" fn(arg1: layer, arg2: update_args)>
batch_normalize: c_int
shortcut: c_int
batch: c_int
forced: c_int
flipped: c_int
inputs: c_int
outputs: c_int
nweights: c_int
nbiases: c_int
extra: c_int
truths: c_int
h: c_int
w: c_int
c: c_int
out_h: c_int
out_w: c_int
out_c: c_int
n: c_int
max_boxes: c_int
groups: c_int
size: c_int
side: c_int
stride: c_int
reverse: c_int
flatten: c_int
spatial: c_int
pad: c_int
sqrt: c_int
flip: c_int
index: c_int
binary: c_int
xnor: c_int
steps: c_int
truth: c_int
smooth: f32
dot: f32
angle: f32
jitter: f32
saturation: f32
exposure: f32
shift: f32
ratio: f32
learning_rate_scale: f32
clip: f32
softmax: c_int
classes: c_int
coords: c_int
background: c_int
rescore: c_int
objectness: c_int
joint: c_int
noadjust: c_int
reorg: c_int
log: c_int
tanh: c_int
mask: *mut c_int
total: c_int
alpha: f32
beta: f32
kappa: f32
coord_scale: f32
object_scale: f32
noobject_scale: f32
mask_scale: f32
class_scale: f32
bias_match: c_int
random: c_int
ignore_thresh: f32
truth_thresh: f32
thresh: f32
focus: f32
classfix: c_int
absolute: c_int
onlyforward: c_int
stopbackward: c_int
dontload: c_int
dontsave: c_int
dontloadscales: c_int
temperature: f32
probability: f32
scale: f32
cweights: *mut c_char
indexes: *mut c_int
input_layers: *mut c_int
input_sizes: *mut c_int
map: *mut c_int
rand: *mut f32
cost: *mut f32
state: *mut f32
prev_state: *mut f32
forgot_state: *mut f32
forgot_delta: *mut f32
state_delta: *mut f32
combine_cpu: *mut f32
combine_delta_cpu: *mut f32
concat: *mut f32
concat_delta: *mut f32
binary_weights: *mut f32
biases: *mut f32
bias_updates: *mut f32
scales: *mut f32
scale_updates: *mut f32
weights: *mut f32
weight_updates: *mut f32
delta: *mut f32
output: *mut f32
loss: *mut f32
squared: *mut f32
norms: *mut f32
spatial_mean: *mut f32
mean: *mut f32
variance: *mut f32
mean_delta: *mut f32
variance_delta: *mut f32
rolling_mean: *mut f32
rolling_variance: *mut f32
x: *mut f32
x_norm: *mut f32
m: *mut f32
v: *mut f32
bias_m: *mut f32
bias_v: *mut f32
scale_m: *mut f32
scale_v: *mut f32
z_cpu: *mut f32
r_cpu: *mut f32
h_cpu: *mut f32
prev_state_cpu: *mut f32
temp_cpu: *mut f32
temp2_cpu: *mut f32
temp3_cpu: *mut f32
dh_cpu: *mut f32
hh_cpu: *mut f32
prev_cell_cpu: *mut f32
cell_cpu: *mut f32
f_cpu: *mut f32
i_cpu: *mut f32
g_cpu: *mut f32
o_cpu: *mut f32
c_cpu: *mut f32
dc_cpu: *mut f32
binary_input: *mut f32
input_layer: *mut layer
self_layer: *mut layer
output_layer: *mut layer
reset_layer: *mut layer
update_layer: *mut layer
state_layer: *mut layer
input_gate_layer: *mut layer
state_gate_layer: *mut layer
input_save_layer: *mut layer
state_save_layer: *mut layer
input_state_layer: *mut layer
state_state_layer: *mut layer
input_z_layer: *mut layer
state_z_layer: *mut layer
input_r_layer: *mut layer
state_r_layer: *mut layer
input_h_layer: *mut layer
state_h_layer: *mut layer
wz: *mut layer
uz: *mut layer
wr: *mut layer
ur: *mut layer
wh: *mut layer
uh: *mut layer
uo: *mut layer
wo: *mut layer
uf: *mut layer
wf: *mut layer
ui: *mut layer
wi: *mut layer
ug: *mut layer
wg: *mut layer
softmax_tree: *mut tree
workspace_size: usize
Trait Implementations
impl Debug for layer
[src]
fn fmt(&self, __arg_0: &mut Formatter) -> Result
[src]
Formats the value using the given formatter. Read more