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Introduction to the Swarm



The Swarm at the Edge of the Cloud

Infrastructural
core

The Cloud
Mobile

Access & Relay

The Swarm

J. Rabaey, ASPDAC’08

Swarm, or
• Internet of Things (IoT)
• Internet of Everything (IoE)
• Industry 4.0
• The Industrial Internet
• TSensors (Trillion Sensors)
• Machine to Machine (M2M)
• Smarter Planet
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Gartner Hype Cycle (2015)
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A Cloud-centric Approach

(a) Electric Imp (b) Samsung SAMI

(c) Ninja Sphere
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http://www.limetrace.co.uk/electric-imp-platform
https://developer.samsungsami.io/sami/sami-documentation/
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“The Cloud”: Model vs. Reality
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The Cloud is Not Enough

Web/IT Swarm/IoT

Privacy & Security Open for access Sensitive data
Scalability Power law Billion devices

Interaction Model Human Machine
Latency Variable Bounded

Bandwidth Downstream Upstream
Availability (QoS) No guarantee Requirement

Durability Management Cloud controls Users control

Pitfalls with Today’s Approach to IoT [Zhang et al., 2015]

Web/IT Swarm/IoT

Privacy & Security Open for access Sensitive data
Scalability Power law Billion devices

Interaction Model Human Machine
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Bandwidth Downstream Upstream
Availability (QoS) No guarantee Requirement

Durability Management Cloud controls Users control

Pitfalls with Today’s Approach to IoT [Zhang et al., 2015]
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Bandwidth: Downstream vs. Upstream

Users Users

Web/IT Swarm/IoT
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Network Resource Adaptation



Limited Network Resource

Demand
Huge Data Volume at the Edge

Resource
Insufficient WAN Bandwidth

Demand
Huge Data Volume at the Edge

Resource
Insufficient WAN Bandwidth

Demand
Huge Data Volume at the Edge

Resource
Insufficient WAN Bandwidth

• Video surveillance, 3 mbps per camera [Amerasinghe, 2009]
• Electrical grid monitoring, 1.4 million data points per

second [Andersen and Culler, 2016]
• Machine logs, 25 TB daily at Facebook (2009)

. . . Dropcam, a WiFi video-streaming camera and associated cloud
backend service for storing and watching the resulting video. Dropcam
has the fewest clients (2,940) . . .. Yet, each client uses roughly 2.8 GB a
week and uploads nearly 19 times more than they download, implying
that Dropcam users do not often watch what they record.

Large-scale Measurements of Wireless Network Behavior
[Biswas et al., 2015]
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Bandwidth variations throughout the day between Amazon EC2 sites. Similar scarcity
and variation for wireless networks, broadband access networks and cellular networks
(backup slides).

What about edge processing? (I will cover in the second half of this talk).

But communication is not avoidable.

• Large performance gap between the cloud and the edge
(GPU/TPU/ASIC).

• Aggregation is sometimes necessary in applications.
• Last-hop wireless may become the bottleneck.
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Fidelity vs. Freshness

When the network resource is not sufficient:

• TCP ensures data delivery, but hurts latency
• UDP sends as fast as possible, uncontrolled packet loss
• Manual policies (developer heuristics) are sub-optimal

• JetStream [Rabkin et al., 2014] uses manual policy
• “if bandwidth is insufficient, switch to sending images at 75% fidelity,

then 50% if still not enough”
• Application-specific optimizations don’t generalize

• Video streaming often aims at Quality of Experience (limited
degradation dimension, e.g. maintain 25FPS)

• For object detection, resolution matters more than FPS
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Application-specific Optimizations Don’t Generalize

t=0s, small target in far-field views

t=1s, small difference

Positive if intersection over union (IOU)
larger than 0.5.

IOU =
Area of Intersection

Area of Union

(a) IOU=0.14 (b) IOU=0.57 (c) IOU=0.82

F1 score is the harmonic mean of precision
and recall, ranging from 0 to 1:

P N
Y True Positive False Positive
N False Negative True Negative

Precision =
true positive
all positive

Recall = true positive
all detection

F1 =
2

1
Recall +

1
Precision

30 10 5 3 2
0

50

100
100

40
21 13 9

100 92 90 87 84

Frame Rate

Bandwidth (normalized) Accuracy

1080p 900p 720p 540p 360p
0

50

100
100

79
54

29 17

100 87 84 71

11

Resolution
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Application-specific Optimizations Don’t Generalize

t=0s, nearby and large targets

t=1s, large difference

30 10 5 3 2
0
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100
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64
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Frame Rate

Bandwidth (normalized) Accuracy
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Making Adaptation Practical is Challenging

Goal
Minimize bandwidth while maximizing application accuracy

Challenges:
1. Application-specific optimizations don’t generalize.

• APIs: maybe operators to express adaptation.
2. It requires expertise and manual work to explore multidimensional

adaptation.
• Profiling: automatically learn Pareto-optimal strategy with

multi-dimensional exploration.
3. The adaptation happens at the runtime.

• Engineering an adaptation system to balance latency and accuracy.

Develop

Application

maybe API

Profiler

Offline
Profiling

Online
Profiling

Runtime

Runtime
Adaptation

Resource
Allocation

Training
Data 10.7 1920 100

91

accvar

12808.3

bw
Profile

Utility 
Function

Online
Data
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(1) Stream Processing APIs

OperatorData Stream Data Stream

map(f){x1, x2, x3, x4, . . .} {f(x1), f(x2), f(x3), f(x4), ...}

window(2, f){x1, x2, x3, x4, . . .} {f(x1, x2), f(x3, x4), ...}

maybe(⃗k, f){x1, x2, x3, x4, . . .} {f(x1, ki1), f(x2, ki2), f(x3, ki3), f(x4, ki4), ...}

Normal

map (f: I ⇒ O) Stream<I> ⇒ Stream<O>
skip (i: Integer) Stream<I> ⇒ Stream<I>

window (count: Integer, f: Vec<I> ⇒ O) Stream<I> ⇒ Stream<O>
... ...

Adaptation

maybe (knobs: Vec<T>, f: (T, I) ⇒ I) Stream<I> ⇒ Stream<I>
maybe_skip (knobs: Vec<Integer>) Stream<I> ⇒ Stream<I>

maybe_head (knobs: Vec<Integer>) Stream<Vec<I>> ⇒ Stream<Vec<I>>
... ...
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maybe(knobs: Vec<T>, f: (T, I) => I)

let quantized_stream = vec![1, 2, 3, 4].into_stream()
.maybe(vec![2, 4], |k, val| val / k)
.collect();

[1, 2, 3, 4]

no degradation

[0, 1, 1, 2]

k = 2

[0, 0, 0, 1]

k = 4

We rewrite the video streaming application as follows,
let app = Camera::new((1920, 1080), 30)

.maybe_downsample(vec![(1600, 900), (1280, 720)])

.maybe_skip(vec![2, 5])

.map(|frame| pedestrian_detect(frame))

.compose();

Example code in Rust, simplified for presentation.
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(2) Profiling

let app = Camera::new((1920, 1080), 30)
.maybe_downsample(vec![(1600, 900), (1280, 720)])
.maybe_skip(vec![2, 5])
.map(|frame| pedestrian_detect(frame))
.compose();

Training Data Accuracy Function

downsample skip bandwidth accuracy

(1920, 1080) 0 10.7 1.0
(1600, 900) 0 8.3 0.88
(1280, 720) 0 6.3 0.87
(1920, 1080) 2 9.3 0.90

... ... ... ...
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Profile: Pareto-optimal Strategy

0 10

1

Bandwidth (normalize)

Ac
cu

ra
cy

Symbol Description

n number of degradation operations
ki the i-th degradation knob

c = [k1, k2, ...kn] one specific configuration
C the set of all configurations

B(c) bandwidth requirement for c
A(c) accuracy measure for c

P Pareto-optimal set

P = {c ∈ C : {c′ ∈ C : B(c′) < B(c), A(c′) > A(c)}︸ ︷︷ ︸
set of better configurations c′

= ∅}

See red markers in the figure.
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(3) Runtime Adaptation

Source
Stream

Socket Analyticsdata

Client (Edge) Server

data application

Source
Stream
Maybe Socket

Adaptation Controller
(AC)

Receiver Analytics

Online 
Profiler

Queue

raw data

data

profileClient (Edge) Server

data
control

application
system

Startup
1

Degrade3

2
Steady5

4

6 Probe7
8

9

10

Adaptation Controller State Machine. We introduce Probe phase to conservatively change
adaptation level. For details, please see the paper/thesis.
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Applications

Application Knobs Accuracy Dataset

Augmented
Reality

resolution
frame rate

quantization

F1 score
[Rijsbergen, 1979]

iPhone video clips
training: office (24s)
testing: home (246s)

Pedestrian
Detection

resolution
frame rate

quantization
F1 score

MOT16 [Milan et al., 2016]
training: MOT16-04
testing: MOT16-03

Log Analysis
(Top-K, K=50)

head (N)
threshold (T)

Kendall’s τ

[Abdi, 2007]

SEC.gov logs [DERA, 2016]
training: 4 days
testing: 16 days

12927
1652044
1586704
886982

1315255
923796

1086467
824142
897070

1288776
1429415
100591
100517

1004980
943003
19617

880771
1067701
1357615
1318568
1107694

33488
818479

1064863
71691

1608233
1022652
893739

1409970
1108524
1623613
312070

1600422
828944
908255
92416

1144519
1575515
216228
922621
887596
939767

1619954
1490892
926326

1486957
859598
800240

1421182
1397911

0 1000 2000 3000 4000
Access Times
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Top-K

Log Window
(1 second)

maybe
head(N)

N=3

maybe
threshold(T)

T=2

Merge Top-K
(K=1)

f1
f2
f2
…

(f1: 4)
(f2: 2)
(f3: 1)
(f4: 1)

…

(f1: 4)
(f2: 2)
(f3: 1) (f1: 4)

(f2: 2) (f2: 5)
(f1: 4)
(f3: 4)

Log Window
(1 second)

maybe
head(N)

N=3

maybe
threshold(T)

T=2
(f3: 4)
(f2: 3)

f2

Client (Source)

Server (Analytics)

Client (Source)

A distributed Top-K application with two degradation operations: head and threshold. In this
example, f2, which is not in Top-1 for either client, becomes the global Top-1 after the merge. It
would have been purged if the clients use threshold T=3, demonstrating degradation that reduces
data sizes affects fidelity.
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Evaluation: Generated Profiles

(a) Augmented Reality (AR)
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(b) Pedestrian Detection (PD)
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• Optimal strategy is achieved with multiple dimensions; tuning one dimension
leads to suboptimal performance.

• For the same application, different dimensions have different impact.
• For different applications, the same dimension has different impact.
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Evaluation: Generated Profiles (Top-K)
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• The effect of each dimension is not
significantly different.

• The profile offers quantified effects
of degradation.
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Evaluation: Runtime Experiment Baselines

Baseline Description

Streaming over TCP A non-adaptive approach

Streaming over UDP A non-adaptive approach, represents RTP/UD-
P/RTSP video streaming

JetStream
[Rabkin et al., 2014]

Manual Policy: “if bandwidth is insufficient, switch
to sending images at 75% fidelity, then 50% if there
still isn’t enough bandwidth. Beyond that point, re-
duce the frame rate, but keep the image fidelity.”

JetStream++
Uses adaptation policy generated by AWStream. Jet-
Stream runtime does not probe (hence may oscillate
between policies).

HLS
[Pantos and May, 2016]

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2016].

nginx-ts-module

MPEG-TS
programs

/publish

/data/hls/video/index.m3u8

Nginx

Video

HLS chunks

1.1.ts 1.2.ts 1.3.ts

2.1.ts 2.2.ts 2.3.ts
hls.js

high res

refresh every second

HTML
<video>

low res

Analytics

FFmpeg
multi-bitrate

encoding

Wide-area 
Network

(bottleneck)

HTTP Live Streaming (HLS) architecture: designed for live video viewing and relying on buffering
at the viewing side.
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Evaluation: Runtime Performance

●AWStream JetStream++ JetStream
HLS Streaming over TCP Streaming over UDP
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Compute Resource Adaptation



Edge Computing: Fog/Cloudlet/Swarmbox & New Infrastruc-
ture

Cisco Fog Computing [Bonomi et al., 2012]

Cloudlet [Satyanarayanan et al., 2009]

Philips Hue Hub SmartThings Smartphones Google onHub SwarmBox
Intel NUC

Many Gateways
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Heterogeneous Environment

IoT / Mobile
Devices

Edge Computers
(Cloudlet) Cloud

More Available ResourcesCompute PowerLimited Resources

Less workload Workload More workload
Less resource guarantee

Higher latency
Less stable connectionsLatencyLower latency

IoT / Mobile
Devices

Edge Computers
(Cloudlet) Cloud

More Available ResourcesCompute PowerLimited Resources

Less workload Workload More workload
Less resource guarantee

Higher latency
Less stable connectionsLatencyLower latency

Characteristics of IoT/mobile, edge and cloud

RPi
Model B

Macbook
Model A1502

Workstation
Xeon E5-1620

4105 544 346

Processing times (ms) on different platforms.
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Accuracy and Processing Times Tradeoff

Adaptation
Different algorithm and parameters
affect the accuracy and processing
times.

Within the tradeoff space, select
appropriate algorithm and
parameters to meet bounded
response time goal.

0 10

1

Processing Times (normalize)
Ac

cu
ra

cy
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Accuracy and Processing Times Tradeoff
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(a) Benchmarks for popular convolutional
neural network (CNN) models. Data source:
https://github.com/jcjohnson/
cnn-benchmarks.
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(b) Benchmarks for Viola Jones face
detection when changing different
parameters (see explanation on the next
slide).
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detectMultiScale in Viola-Jones (or CascadeClassifier)

The OpenCV implementation of
Viola-
Jones [Viola and Jones, 2001] has
three parameters,

• scale: how much the image
size is reduced at each image
scale.

• min_size: minimum
detect-able object size.

• min_neighbors: how many
neighbors each candidate
rectangle should have to
retain it.

Image Source: pyimagesearch.

Image Source: pyimagesearch.

Image Source: Stack Overflow.
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Exhaustive Search is Too Expensive

Best accuracy
(22.1 ms, 80.2%)
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) Pareto boundary
tune min_neighbors

tune min_size
tune scale

• scale: how much image size is reduced at each image scale.
• min_size: minimum detect-able object size.
• min_neighbors: how many neighbors each candidate rectangle

should have to retain it.
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detectMultiScale in Histogram of Oriented Gradients (HOG)

pub struct HogParams {
pub win_size: Size2i,
pub block_size: Size2i,
pub block_stride: Size2i,
pub cell_size: Size2i,
pub nbins: c_int,
pub win_sigma: f64,
pub l2hys_threshold: f64,
pub gamma_correction: bool,
pub nlevels: usize,
pub hit_threshold: f64,
pub win_stride: Size2i,
pub padding: Size2i,
pub scale: f64,
pub group_threshold: c_int,
pub use_meanshift_grouping: bool,
pub final_threshold: f64,

}

Image Source: learnopencv.com.

30/37

learnopencv.com


Challenges in Adapting Computation

Goal
Adapt computation to different platforms

Challenges:

1. Large parameter space
• Previous approaches use random search or coordinate/greedy

approach
• We propose Bayesian Optimization (BO) for profiling

2. Heterogeneous capabilities (and not available when profiling)
• Profile transfer: refine existing Pareto-optimal points
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Bayesian Optimization 101

Bayesian optimization approximate black-box functions with proxy
functions and iteratively proposes new sample point in the large
parameter space. Effective for,

• Evaluating each sample is expensive.
• The objective is a black-box.
• The evaluation can be noisy.

Gaining attraction beyond ML scope:
• CherryPick [Alipourfard et al., 2017]

finds the best cloud configurations
for big data analytics.

• Google optimize chocolate chip
cookies recipes [Solnik et al., 2017].
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Bayesian Optimization (Illustrated)

Algorithm 1: Bayesian optimization

1: for n ¼ 1; 2; . . . ; do
2: select new xnþ1 by optimizing acquisition function !

xnþ1 ¼ arg max
x

!ðx;DnÞ

3: query objective function to obtain ynþ1

4: augment data Dnþ1 ¼ fDn; ðxnþ1; ynþ1Þg
5: update statistical model
6: end for

One problem with this minimum expected risk
framework is that the true sequential risk, up to the
full evaluation budget, is typically computationally
intractable. This has led to the introduction of many
myopic heuristics known as acquisition functions, e.g.,
Thompson sampling (TS), probability of improvement,
expected improvement (EI), upper confidence bounds,
and entropy search (ES). These acquisition functions
trade off exploration and exploitation; their optima are

located where the uncertainty in the surrogate model is
large (exploration) and/or where the model prediction is
high (exploitation). Bayesian optimization algorithms
then select the next query point by maximizing such
acquisition functions. Naturally, these acquisition func-
tions are often even more multimodal and difficult to
optimize, in terms of querying efficiency, than the
original black-box function f . Therefore, it is critical
that the acquisition functions be cheap to evaluate or
approximate: cheap in relation to the expense of
evaluating the black box f . Since acquisition functions
have analytical forms that are easy to evaluate or at least
approximate, it is usually much easier to optimize them
than the original objective function.

A. Paper Overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that
we aim to disentangle the multiple components that
determine the success of Bayesian optimization imple-
mentations. In particular, we focus on statistical modeling

Fig. 1. Illustration of the Bayesian optimization procedure over three iterations. The plots show the mean and confidence intervals estimated with

a probabilistic model of the objective function. Although the objective function is shown, in practice, it is unknown. The plots also show the

acquisition functions in the lower shaded plots. The acquisition is high where the model predicts a high objective (exploitation) and where the

prediction uncertainty is high (exploration). Note that the area on the far left remains unsampled, as while it has high uncertainty, it is correctly

predicted to offer little improvement over the highest observation [27].

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

150 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

Acquisition function evaluates the utility of candidate
points for the next evaluation of f, balancing a high
objective (exploitation) and high uncertainty
(exploration) [Shahriari et al., 2016]

Mickaël Binois, Victor Picheny 5

●

●
●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f1

f 2

●

●
●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f1

f 2

●

Figure 1: Comparison of additive-epsilon (left, arrows) and hypervolume (right, filled areas)
improvements for two possible new observations (green and blue) to the current Pareto front
(red points). The reference point for hypervolume computations is the black crossed circle.
In terms of epsilon improvement, the green point is more interesting as it is farther away from
the Pareto front, but the blue point is better in terms of volume increment.

improvement. Empirical comparisons showed the clear superiority of some approaches to
others (Svenson 2011; Wagner et al. 2010), but no global consensus on a particular improve-
ment function. In GPareto, two infill criteria derived from this point of view are available:
the expected hypervolume improvement (EHI, Emmerich et al. 2011) and expected maximin
improvement (EMI, Svenson and Santner 2016, related to the epsilon indicator). See the
corresponding references for the technical details.

Two alternatives have been included in GPareto as well. First, in the SMS-EGO approach
(S-metric selection EGO, Ponweiser et al. 2008; Wagner et al. 2010), the improvement is
calculated as the hypervolume added to the current Pareto front by the lower confidence
bound of the prediction at x, hence it is closely related, but not equal to the EHI. To avoid
large plateaus of zero improvement, an adaptive penalization is provided in regions where the
lower confidence bound is dominated.

Finally, the stepwise uncertainty reduction (SUR) criterion of Picheny (2015) is in turn con-
cerned with the probability of non-domination (also called probability of improvement), that
is, the probability of a point not to be dominated by the current Pareto set: P [x 6� Xn]. Intu-
itively, regions in the design space with non-null probabilities indicate a potential improvement
for the Pareto front, and the improvement considered is the reduction of the average of this
probability over the design space.

These sequential infill criteria share the common trait that they do not provide a continuous
representation of the Pareto front but only consider the current set of non-dominated obser-
vations. This point is addressed in the following with a quantification of the uncertainty on
both the Pareto set and front.
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Figure 1: Comparison of additive-epsilon (left, arrows) and hypervolume (right, filled areas)
improvements for two possible new observations (green and blue) to the current Pareto front
(red points). The reference point for hypervolume computations is the black crossed circle.
In terms of epsilon improvement, the green point is more interesting as it is farther away from
the Pareto front, but the blue point is better in terms of volume increment.

improvement. Empirical comparisons showed the clear superiority of some approaches to
others (Svenson 2011; Wagner et al. 2010), but no global consensus on a particular improve-
ment function. In GPareto, two infill criteria derived from this point of view are available:
the expected hypervolume improvement (EHI, Emmerich et al. 2011) and expected maximin
improvement (EMI, Svenson and Santner 2016, related to the epsilon indicator). See the
corresponding references for the technical details.

Two alternatives have been included in GPareto as well. First, in the SMS-EGO approach
(S-metric selection EGO, Ponweiser et al. 2008; Wagner et al. 2010), the improvement is
calculated as the hypervolume added to the current Pareto front by the lower confidence
bound of the prediction at x, hence it is closely related, but not equal to the EHI. To avoid
large plateaus of zero improvement, an adaptive penalization is provided in regions where the
lower confidence bound is dominated.

Finally, the stepwise uncertainty reduction (SUR) criterion of Picheny (2015) is in turn con-
cerned with the probability of non-domination (also called probability of improvement), that
is, the probability of a point not to be dominated by the current Pareto set: P [x 6� Xn]. Intu-
itively, regions in the design space with non-null probabilities indicate a potential improvement
for the Pareto front, and the improvement considered is the reduction of the average of this
probability over the design space.

These sequential infill criteria share the common trait that they do not provide a continuous
representation of the Pareto front but only consider the current set of non-dominated obser-
vations. This point is addressed in the following with a quantification of the uncertainty on
both the Pareto set and front.

For two-objective optimization, utility
gain is based on additive-epsilon (top)
or hypervolume
(bottom) [Binois and Picheny, 2018]
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Bayesian Optimization For Performance Modeling

We use PESMO2 [Hernández-Lobato et al., 2016] and compare it with
two baselines: (1) greedy/coordinate search; (2) random search.

BO Greedy Random
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BO evaluates 50 configurations and recommends 29 configurations as the Pareto-optimal boundary
(the blue line). Greedy and Random find sub-optimal Pareto configurations with a budget of 80
evaluations (the yellow line in each figure).

2A Python package based on Spearmint. It chooses evaluation points to maximally
reduce the entropy of the posterior distribution over the Pareto set.
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Profile Transfer (without re-running the entire BO)

We make the following observations:

• Accuracy remains for a given algorithm/parameter.
• Processing time order is preserved

• More expensive algorithms/parameters remain the same across
platforms.

• The “Pareto-optimal” is horizontally stretched/compressed.
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(Left) Empirically, processing times follows a linear approximation. (Right) Stretched/compressed
profile. See paper for details.

35/37



Conclusion and Acknowledgement



Summary and Contributions

• Swarm/IoT has huge potentials but also challenges
• Network resource adaptation

• Addresses scarce and variable WAN bandwidth
• Tradeoff between application accuracy and data size demand

• Compute resource adaptation
• Addresses heterogeneous platforms and large parameter space
• Tradeoff between application accuracy and processing times

• Overall, a systematic and quantitative approach for adaptation
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Current (other) and Future Work

TerraSwarm Vision
TerraSwarm applications are characterized by their ability to dynamically recruit
resources such as sensors and data from the cloud, aggregate and use that
information to make or aid decisions.

(a) Accessor in a network of actors.

reified accessor must have matching ports that conform to
those types. A perfect match, however, is not required. We
follow the type refinement schema for actors similar to that
of Lee and Seshia [27, chapter 14]. An output data type of a
reified accessor, for example, can be a subtype of the type of
the corresponding output of the Mutable accessor. Conversely,
an input type of the reified accessor can be a supertype of the
corresponding input port of the Mutable accessor. In addition,
the reified accessor need not match all the input and output
ports present in the Mutable accessor. Any output port that is
present in the reified accessor but not in the Mutable accessor
will have its events ignored, and any input present in the
Mutable accessor but not in the reified accessor will not be
receiving events. Of course, a useful reification will have at
least some input ports that match.

Dynamically reified accessors may be downloaded from the
Internet as part of a discovery process. Hence, as we will
discuss in Section VI, the accessor to reify is likely to not
be completely trusted. Much as a browser controls the local
resources that a web page can access, our hosts control the
resources that the reified accessor can access. All access to
resources is meditated by modules, like the http-client module
that is required in Fig. 4. The module is implemented by the
host and hence can be constrained in any way appropriate.

F. Hierarchy

The model in Fig. 2 is an instance of what we call a
composite accessor. In that example, the composite accessor
itself has no input and output ports, so it cannot be directly
embedded in another swarmlet. But our accessor framework
supports composite accessors with input and output ports, so
models can be constructed hierarchically.

Even more interestingly, the swarmlet in Fig. 2 interacts
with outside services through the network, for example by
making HTTP requests. Those outside services could them-
selves be swarmlets, and they may have embedded within them
an accessor designed for accessing the services of the swarmlet
in Fig. 2.

This schema is illustrated in Fig. 5. In that figure, two
networked hosts have each instantiated a swarmlet containing
an accessor for the other swarmlet. When the accessor on host
A receives an input event, it sends a message to the accessor
on host B, which then produces an output event. The swarmlet
on host B constructs a response and provides that response as
input event for the accessor, which sends a message back to
host A. Finally, the accessor on host A produces an output
event with the response. This mechanism can be used to
construct services that can then be easily instantiated remotely;
the service (a swarmlet) provides an accessor that another
swarmlet can instantiate.

Of course, once such peer-to-peer interactions exist, a
new form of brittleness appears. One piece of a distributed
application may be updated, for example, without being able
to simultaneously update the other pieces. Some sort of
coordinated deployment and update will have to be developed.

Fig. 5. Schema whereby swarmlets have accessors that can be instantiated in
other swarmlets.

V. A PLATFORM FOR COMPOSING THINGS

Accessors are generic reusable components that can be
composed in a common semantic domain with an actor-based
discrete-event semantics furnished by a host implementation.
As such, the host can be thought of as a platform in the sense
of Platform-Based Design (PBD) [41]. The key goal of PBD
is to separate functionality (the what) from architecture (the
how) and be able to map a design (or parts of it) onto different
architectures without having to change the design.

Platforms abound in IoT. A typical philosophy is to offer
an application programming ecosystem deployed on a certain
type of host, such as Node.js or a centralized cloud service.
An application facilitates communication among Things using
information streams, which can be acted on directly or scanned
for events. Generally, the focus has been on supporting diverse
host-to-Thing connections, with some success. An application
developed on a particular platform is usually not transferable
to another platform. This paradigm works well for a set of
Things owned by the same entity and a community substantial
enough to afford its own application designers.

Looking to the future, it is desirable to write an application
once and deploy it on any host connected to the right Things.
How should this application be written? JavaScript is an attrac-
tive candidate due to its widespread usage and compatibility
with heterogeneous hosts, such as web browsers and Node.js.

One underlying problem is that JavaScript host environ-
ments differ, particularly in their mechanisms for allocating
compute resources for large computations, providing perma-
nent data storage, and global variable management. Pure
JavaScript provides no such mechanisms, and hence, when
such mechanisms are provided by a host, they are often
provided in a host-specific way. Typically, these mechanisms
are implemented in the host’s native language, such as C, C++,
or Java, and then provided to the JavaScript programs through
modules that must be explicitly “required” by the program.

To solve this, the Accessor approach leverages an informa-
tion hiding strategy. Accessor code has no direct access to
platform-specific primitives. Instead, an accessor may declare
dependencies on functionality contained in a host-provided
module, like the http-client module in Fig. 4. A module ideally
has a common API for all hosts but may have a host-specific

(b) Instantiate accessors on another host.

Work in progress with Marten and Andrés. Maybe checkout Marten’s dissertation talk
in the future :)
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Google Network Infrastructure
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Figure �: Bandwidth Sharing on a Bottleneck Link.

bandwidth function reaches the FlowGroup’s estimated de-
mand, it becomes �at from that point for all the following
regions.
Figure � shows example bandwidth functions for two Flow-

Groups, f g� and f g�, based on BwE con�guration as de�ned
in Table �. �ere are two regions of fair share: Guaranteed (�-
�) and Best-E�ort (�-∞). �e endpoints for each region are
system-level constants de�ned in BwE con�guration. BwE’s
estimated demand of f g� is ��Gbps and hence, its bandwidth
function �attens past that point. Similarly, f g�’s estimated de-
mand is ��Gbps.
We present a scenario where f g� and f g� are sharing one

constrained link in the network. �e goal of the BwE algo-
rithm is to allocate the bandwidth of the constrained link
such the following constraints are satis�ed: �) f g� and f g� get
maximumpossible but equal fair share, and �) sumof their al-
located bandwidth corresponding to the allocated fair share
is less than or equal to the available bandwidth of the link.
Figure � shows the output of the BwE allocation algorithm
(Section �.�) with varying link’s available bandwidth shown
on the x-axis. �e allocated fair share to the FlowGroups is
shown on the right y-axis and the corresponding bandwidth
allocated to the FlowGroups is shown on the le� y-axis. Note
that the constraints above are always satis�ed at each snap-
shot of link’s available bandwidth. One can verify using this
graph that the prioritization as de�ned byTable � is respected.
One of BwE’s principal responsibilities is to dynamically

determine the level of contention for a particular resource
(bandwidth) and to then assign the resource to all compet-
ing FlowGroups based on current contention. Higher val-
ues of fair share indicate lower levels of resource contention
and correspondingly higher levels of bandwidth that can po-
tentially be assigned to a FlowGroup. Actual consumption
is capped by current FlowGroup estimated demand,making
the allocation work-conserving (do not waste any available
bandwidth if there is demand).
�e objective of BwE is themax-min fair [�] allocation of

fair share to competing site-fgs and then the max-min fair
allocation of fair share to user-fgs within a site-fg. For each
user-fg, maximize the utilization of the allocated bandwidth
to the user-fg by subdividing it to the lower levels of hierar-

Figure �: BwE Architecture.

chy (job-fgs and task-fgs) equally (no weights) based on their
estimated demands.

3.2.4 Bandwidth Function Aggregation

Bandwidth Functions can be aggregated from one Flow-
Group level to another higher level. We require such aggre-
gation when input con�guration de�nes a bandwidth func-
tion at a �ner granularity, but the BwE algorithm runs over
coarser granularity FlowGroups. For example, BwE’s input
con�guration provides bandwidth function at user-fg level,
while BwE (Section �.�) runs across cluster-fgs. In this case,
we aggregate user-fgs bandwidth functions to create a cluster-
fg bandwidth function.We create aggregated bandwidth func-
tions for a FlowGroup by adding bandwidth value for each
value of fair share for all its children.

4. SYSTEM DESIGN
BwE consists of a hierarchy of components that aggregate

network usage statistics and enforce bandwidth allocations.
BwE obtains topology and other network state from a net-
work model server and bandwidth sharing policies from an
administrator-speci�ed con�guration. Figure � shows the
functional components in BwE.

4.1 Host Enforcer
At the lowest level of the BwE hierarchy, theHost Enforcer

runs as a user space daemon on end hosts. Every �ve sec-
onds, it reports bandwidth usage of local application’s tasks-
fgs to the Job Enforcer. In response, it receives bandwidth
allocations for its task-fgs from the Job Enforcer. �e Host
Enforcer collects measurements and enforces bandwidth al-
locations using the HTB (Hierarchical Token Bucket) queu-
ing discipline in Linux.

4.2 Job Enforcer
Job Enforcers aggregate usages from task-fgs to job-fgs and

report job-fgs’ usages every �� seconds to the Cluster En-
forcer. In response, the Job Enforcer receives job-fgs’ band-
width allocations from theClusterEnforcer.�e JobEnforcer
ensures that for each job-fg, bandwidth usage does not ex-

BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed
Computing [Kumar et al., 2015]

Move from Lagrangian to Eulerian (ask Edward if you don’t know what
these words refer to).
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Video Encoding Frames

PC: https://en.wikipedia.org/wiki/Video_compression_picture_types

• I-frames are the least compressible but don’t require other video
frames to decode. I-frames are further compressed with quantization.

• P-frames can use data from previous frames to decompress and are
more compressible than I-frames.

• B-frames can use both previous and forward frames for data
reference to get the highest amount of data compression (not an
option in live streaming).



Evaluation: Resource Allocation for Multiple Applications

● Pedestrian Detection Augmented Reality
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Bandwidth Fluctuations (Cellular)

each test which match the observed bandwidths in real mo-
bile 3G networks. We have previously [10, 11] performed a
large number of real-world experiments, and while we found
the bandwidth (as a function of geographical location) to be
fairly deterministic, this study requires identical results on
each run to achieve a fair comparison.

For this reason, we created an advanced throttling module
for our Apache web server. This module takes as input a
bandwidth log (from a real-world test) that contains a single
kbit/s number for every second of the session. After loading
the bandwidth log, the first HTTP request starts the session.
At time t after the session starts, the web server’s maximum
throughput for the next second will be B(t), where B(t) is
the bandwidth at time t in the log that was used as input to
the throttling module. In addition to bandwidth throttling,
our Apache module also adds a small one-way delay of 40 ms
to simulate the average round-trip latency as experienced
and measured in our real wireless 3G network.

This approach means that each media player can get ex-
actly the same conditions, ensuring both fairness and repro-
ducibility in our experiments, while at the same time being
nearly as realistic as a field trial.

We selected four representative bandwidth logs from our
database of measurements2. Each log represents a typical
run in its respective environment. The four streaming en-
vironments are popular commute routes in Oslo (Norway)
using ferry, metro, bus and tram. The travel routes with the
corresponding bandwidths are shown in figure 2. We can see
that they represent di↵erent challenges with respect to both
achieved rates and outages.

2.4 Logging a Segment’s Video Quality

While streaming, we used tcpdump [5] on the server to log
every packet transmitted to the receiver, so that we could
measure the actual achieved throughput (which might be
less than the bandwidth cap set by the throttling module,
e.g., if the client consumes the available network resources
ine�ciently). The packet dump contains every HTTP GET
request for every downloaded segment, so it also contains the
information we need to plot the quality level as a function
of playout time. However, because we are testing propri-
etary media players where we do not know the state of their
internal bu↵ers, bu↵er underruns were logged manually by
actually watching the video in every test, and registering the
times when the video stopped and resumed.

3. RESULTS AND ANALYSIS

In this section, we present our results. In particular, we
look at 1) the achieved segment quality along the routes
according to time, 2) the amount of video data presented
in each quality level including bu↵er underruns, and 3) the
length of each playout interval at a given quality to give an
indication of the quality switching pattern. These properties
are plotted in figures 3, 4 and 5, respectively, for all four
routes.

3.1 Adobe

Comparing Adobe’s quality level plots in figure 3 with
the bandwidth plots, one can clearly see that their shapes

2These streaming environments were used extensively in
our previous paper on predictive quality scheduling algo-
rithms [10].
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(b) Metro (dotted line in tunnel)

(c) Bus

(d) Tram

Figure 2: Test environments and the observed band-
widths used in our experiments.

are almost identical. From this, we conclude that the qual-
ity scheduler in Adobe’s Strobe player bases its decisions
almost exclusively on the most recent bandwidth numbers.
The next segment to be downloaded is the one whose bitrate
is closest to the current bandwidth, with no considerations to
stability or safety margins. As a result, the users’ quality of
experience su↵ers due to bu↵er underruns and too frequent
oscillations in quality (figure 5). Despite minimal use of
bu↵ering, the scheduler achieves decent bandwidth utiliza-
tion, mainly because high bitrate segments were downloaded
quite often (even when unsafe to do so), meaning more bytes
per download request, and thus, less wasted bandwidth.

3.2 Apple

The quality scheduler in Apple’s iPad player stands out
from the others by being more careful about increasing qual-
ity. Its frequent use of low quality segments produces stable
quality (figure 5) with long intervals in the same quality. The
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to simulate the average round-trip latency as experienced
and measured in our real wireless 3G network.
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actually watching the video in every test, and registering the
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according to time, 2) the amount of video data presented
in each quality level including bu↵er underruns, and 3) the
length of each playout interval at a given quality to give an
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are almost identical. From this, we conclude that the qual-
ity scheduler in Adobe’s Strobe player bases its decisions
almost exclusively on the most recent bandwidth numbers.
The next segment to be downloaded is the one whose bitrate
is closest to the current bandwidth, with no considerations to
stability or safety margins. As a result, the users’ quality of
experience su↵ers due to bu↵er underruns and too frequent
oscillations in quality (figure 5). Despite minimal use of
bu↵ering, the scheduler achieves decent bandwidth utiliza-
tion, mainly because high bitrate segments were downloaded
quite often (even when unsafe to do so), meaning more bytes
per download request, and thus, less wasted bandwidth.

3.2 Apple

The quality scheduler in Apple’s iPad player stands out
from the others by being more careful about increasing qual-
ity. Its frequent use of low quality segments produces stable
quality (figure 5) with long intervals in the same quality. The

Riiser, Haakon, et al. ”A comparison of quality scheduling in commercial adaptive HTTP streaming
solutions on a 3G network.” Proceedings of the 4th Workshop on Mobile Video. ACM, 2012.



Bandwidth Fluctuations (WiFi)
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Figure 4: Delivery ratio variation over a week for two randomly chosen 2.4 GHz links.
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Figure 5: Delivery ratio variation over a week for two randomly chosen 5 GHz links.

point, which includes a third 802.11n radio that is dedicated
to scanning the entire 2.4 GHz and 5 GHz spectrum and does
not serve clients (unlike the MR16, which only provides uti-
lization on its current channels).

In this section we gather data from 10,000 Meraki MR18
access points, located in the exclusively in the US to simplify
complications due to regulatory domains. As it scans, the
dedicated radio spends 5 ms on each channel. The backend
system collects these results every three minutes, and the
results are aggregated over three-minute periods.

5.1 Interfering APs
Figures 7 and 8 plot, for all the access points, the number

of access points detected versus the channel utilization for
all channels. Because these measurements are taken over
three-minute periods (unlike the one-week windows used in
Figure 2), these figures provide a more instantaneous view
of channel conditions. From the data we do not see a clear
correlation between utilization and the number of interferers
in either band. This lack of correlation implies that simply
using the number of nearby APs is not enough information
to accurately select the most available channel and instead it
is better to use direct channel utilization measurements.

5.2 Day/night variations
We next examine the relative impact of client usage on

channel utilization, by studying variations between day and
night. Figure 9 plots CDF of both frequency bands with uti-
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Figure 7: Scatter plot of utilization versus number of
nearby APs in the 2.4 GHz band.

lization measurements taken at 10 a.m. and 10 p.m. Pacific
time. For the 2.4 GHz band, the median channel (measured
at a specific access point), observes around 5% higher uti-
lization during the day versus the night, whereas in 5 GHz
the utilization measures are similar.

These results differ from Figure 6 because the Meraki
MR16 is only able to measure utilization on its current chan-
nel, versus the Meraki MR18 is able to take measurements
from all channels. In the 5 GHz band, the majority of chan-
nels are unused as seen in Figure 2, which skews the distri-
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Biswas et al, Cisco Meraki, Large-scale Measurements of Wireless Network Behavior,
SIGCOMM’15. Two randomly chosen links.

Continue with the main slides.



Augmented Reality

• Training and testing data characteristics
• 1920x1080 resolution with 30 FPS
• training: 707 frames (23.5 seconds), testing: 1384 frames (46

seconds)
• Object Recognition

• Darknet: Open Source Neural Networks in C
• Developed by Joseph Redmon, ”Do whatever you want with it”

license
• It supports CPU/GPU
• In this work, I am using a pre-trained model with Coco dataset

• Other systems such as TensorFlow, Caffe would also work



IOU and F1

Positive if intersection over union
(IOU) larger than 0.5.

IOU =
Area of Intersection

Area of Union

(a) IOU=0.14 (b) IOU=0.57 (c) IOU=0.82

F1 is the harmonic mean of precision
and recall:

P N
Y True Positive False Positive
N True Positive False Positive

Precision =
true positive
all positive

Recall = true positive
all detection

F1 =
2

1
Recall +

1
Precision
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