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Introduction to the Swarm



The Swarm at the Edge of the Cloud

Swarm, or
= Internet of Things (loT)
= Internet of Everything (loE)
= Industry 4.0

= The Industrial Internet

= TSensors (Trillion Sensors)
= Machine to Machine (M2M)
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A Cloud-centric Approach
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http://www.limetrace.co.uk/electric-imp-platform
https://developer.samsungsami.io/sami/sami-documentation/
http://lucept.files.wordpress.com/2012/06/ninja-blocks-capture.jpg

“The Cloud”: Model vs. Reality
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The Cloud is Not Enough

Web/IT Swarm/loT
Privacy & Security Open for access  Sensitive data
Scalability Power law Billion devices
Interaction Model Human Machine
Latency Variable Bounded
Bandwidth Downstream Upstream
Availability (QoS) No guarantee Requirement

Durability Management  Cloud controls Users control

Pitfalls with Today's Approach to loT [Zhang et al., 2015]

Web/IT Swarm/loT
Privacy & Security Open for access  Sensitive data
Scalability Power law Billion devices
Interaction Model Human Machine
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Bandwidth: Downstream vs. Upstream

ekl

Web/IT Swarm/loT
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Network Resource Adaptation



Limited Network Resource

Resource
Huge Data Volume at the Edge Insufficient WAN Bandwidth
Demand
Huge Data Volume at the Edge Insufficient WAN Bandwidth
Demand Resource
Huge Data Volume at the Edge Insufficient WAN Bandwidth

= Video surveillance, 3 mbps per camera [Amerasinghe, 2009]

= Electrical grid monitoring, 1.4 million data points per
second [Andersen and Culler, 2016]

= Machine logs, 25 TB daily at Facebook (2009)

.. , @ WiFi video-streaming camera and associated cloud
backend service for storing and watching the resulting video. Dropcam
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Fidelity vs. Freshness

When the network resource is not sufficient:

= TCP ensures data delivery, but hurts latency
= UDP sends as fast as possible, uncontrolled packet loss
= Manual policies (developer heuristics) are sub-optimal
= JetStream [Rabkin et al., 2014] uses manual policy
= “if bandwidth is insufficient, switch to sending images at 75% fidelity,
then 50% if still not enough”
= Application-specific optimizations don't generalize
= Video streaming often aims at Quality of Experience (limited
degradation dimension, e.g. maintain 25FPS)
= For object detection, resolution matters more than FPS

<

S 10 5

> Streaming
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Application-specific Optimizations Don’t Generalize

Positive if intersection over union (I0U)
larger than 0.5.

Area of Intersection

U= Area of Union

(a) IoU=0.14  (b) IOU=0.57  (c) IOU=0.82

F1 score is the harmonic mean of precision
and recall, ranging from 0 to 1:

t=1s, small difference P N

Y | True Positive False Positive

N | False Negative | True Negative 10/37




Application-specific Optimizations Don’t Generalize

t=0s, nearby and large targets

t=1s, large difference

100

50 |-

100

50

’ [ 0 Bandwidth (normalized) 00 Accuracy ‘

100100
65 64
32 34
H BE M
Frame Rate
!
1
100 00 93 57 |
|

1080p 900p

720p 540p 360p

Resolution

11/37



Making Adaptation Practical is Challengi

Goal

Minimize bandwidth while maximizing application accuracy

Challenges:

1. Application-specific optimizations don’t generalize.
= APIs: maybe operators to express adaptation.
2. It requires expertise and manual work to explore multidimensional
adaptation.
= Profiling: automatically learn Pareto-optimal strategy with
multi-dimensional exploration.
3. The adaptation happens at the runtime.
= Engineering an adaptation system to balance latency and accuracy.

Profile

Develop = Profiler ow Tvar Taco Runtime
IR offt 10.7[1920[ 100 -
R ine Runtime
Application profiling 8.3 [1280] 91
. 12/37
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(1) Stream Processing APls

{x1,x2, X3, X4, ...} —> map(f)
{x1,x2, X3,%a, ...} —>|  window(2, f)
{x1, %, X3, %, ...} ——> maybe(E, f)

Data Stream

{flxa), ), fa), fixa), .}

{f(x1, x2), fxs, xa), ...}

{fx1, ki), f(x2, ki), f{x3, ki,), fxa, ki), ...}

map (f: 1 = 0O)
skip (i: Integer)

Stream<|> = Stream<O>
Stream<I> = Stream<I>

N |
orma window (count: Integer, f: Vec<I> = O)  Stream<I> = Stream<O>
maybe (knobs: Vec<T>, f: (T, 1) = 1)  Stream<I> = Stream<I>
Adaptation maybe_skip (knobs: Vec<Integer>)  Stream<I> = Stream<I>

maybe_head (knobs: Vec<lInteger>)

Stream<Vec<I>> = Stream<Vec<I>>
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maybe (knobs: Vec<T>, f: (T, I) => I)

let quantized_stream = vec![1, 2, 3, 4].into_stream()
.maybe(vec![2, 4], |k, vall val / k)

.collect();
k=2 kﬁ\
1,2 3, 4] [0,1,1,2] [0, 0,0, 1]

We rewrite the video streaming application as follows,

no degradatio

let app = Camera::new((1920, 1080), 30)
.maybe_downsample(vec! [(1600, 900), (1280, 720)1)
.maybe_skip(vec![2, 5])

.map(|frame| pedestrian_detect(frame))
.compose() ;

Example code in Rust, simplified for presentation.
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(2) Profiling

let app = Camera::new((1920, 1080), 30)
.maybe_downsample(vec! [(1600, 900), (1280, 720)])
.maybe_skip(vec![2, 5])

.map(|frame| pedestrian_detect(frame))
.compose () ;

[ Training Data J [ Accuracy Function ]

\/

downsample  skip  bandwidth  accuracy

(1920, 1080) 0 10.7 1.0
(1600, 900) 0 8.3 0.88
(1280, 720) 0 6.3 0.87
(1920, 1080) 2 9.3 0.90
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Profile: Pareto-optimal Strategy

Symbol

Description

1 xX n
Xx k;
X XX C:[kl,kz,...kn]

number of degradation operations
the i-th degradation knob

one specific configuration

the set of all configurations

Accuracy
X
X
a

0= Al

bandwidth requirement for ¢
accuracy measure for ¢
Pareto-optimal set

Bandwidth (normalize)

P={ceC:{d €C:B() < B),A) > Alc)} = o}

set of better configurations 4

See red markers in the figure.
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(3) Runtime Adaptation

— data () application
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Applications

Application Knobs Accuracy Dataset
Augmented resolution F1 score iPhone video clips
. frame rate
Reality

quantization

[Rijsbergen, 1979]

training: office (24s)
testing: home (246s)

. resolution
Pedestrian
A frame rate
Detection .
quantization

F1 score

MOT16 [Milan et al., 2016]
training: MOT16-04
testing: MOT16-03

Log Analysis head (N)
(Top-K, K=50)  threshold (T)

Kendall's 7
[Abdi, 2007]

SEC.gov logs [DERA, 2016]
training: 4 days
testing: 16 days
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https://www.sec.gov

(f1: 4)
1 (f2:2)
2 (£3:1) (f1: 4)
2 (730 P (f2:2),

Client (Source)

maybe

- . maybe . (f3:1):
E—» pndon ! head(N) ‘— threshold(T) +(
(1 second) CONS3 D T2

- ! maybe |
Log indow ' head(N) —
(1 second) vON=3 :

Client (Source)

T=2

Server (Analytics)

A distributed Top-K application with two degradation operations: head and threshold. In this
example, £2, which is not in Top-1 for either client, becomes the global Top-1 after the merge. It
would have been purged if the clients use threshold T=3, demonstrating degradation that reduces

data sizes affects fidelity.
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Evaluation: Generated Profiles

Accuracy (F1 Score)

(a) Augmented Reality (AR)

-~ - Pareto boundary - = - tune quantizer

tune framerate

-+~ tune resolution

1.001 ‘:’:‘.,’M
0.75 B ox e
050{ oL
025 )
g w
0.00- : :
1 100

Bandwidth (Mbps)

Accuracy (F1 Score)

(b) Pedestrian Detection (PD)

-~ - Pareto boundary - = - tune quantizer

tune framerate

-+~ tune resolution

1.00 e
,1"""* ++

0.75 1 Wi ¥
0.50 A ’/ /" ,,'
0259| ¢ / /

, - "
0.001« - -

1 100

Bandwidth (Mbps)

Optimal strategy is achieved with multiple dimensions; tuning one dimension

leads to suboptimal performance.

For the same application, different dimensions have different impact.

For different applications, the same dimension has different impact.
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Evaluation: Generated Profiles (Top-K)

-+~ Pareto boundary - =~ tune T

= tune N
z 0] &.:-:'F""’”" = The effect of each dimension is not
E 0.81 /-"""". significantly different.
g 061 ;ﬂ = The profile offers quantified effects
§ 041" : . . of degradation.

10 100 1000

Bandwidth (Kbps)
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Evaluation: Runtime Experiment Baselines

Baseline Description

Streaming over TCP A non-adaptive approach

A non-adaptive approach, represents RTP/UD-

Streaming over UDP' 1 2 16p yideo streaming

Manual Policy: “if bandwidth is insufficient, switch

JetStream to sending images at 75% fidelity, then 50% if there

[Rabkin et al., 2014] still isn't enough bandwidth. Beyond that point, re-
duce the frame rate, but keep the image fidelity.”

Uses adaptation policy generated by AWStream. Jet-
JetStream++ Stream runtime does not probe (hence may oscillate
between policies).

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2016].

HLS
[Pantos and May, 2016]

22/37
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Evaluation: Runtime Performance

- = — AWStream JetStream++ -~ =+ — JetStream
= =~ = HLS Streaming over TCP = =% = Streaming over UDP
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Compute Resource Adaptation




Edge Computing: Fog/Cloudlet/Swarmbox & New Infrastruc-

ture

Mobil %Iym%usk
e mxoovi ﬁ
Compuyter

> Android Low Distant cloud
/.
—— Sh;,?,'eq mg&:ﬂ:‘jm on Internet
wireless
Nokia N810- network
q a q Coffee sl
Cisco Fog Computing [Bonomi et al., 2012] vaggafgllgw Hocsa
Glove
Cloudlet [Satyanarayanan et al., 2009]
ad
5 4 comyzm,
Philips Hue Hub SmartThings Smartphones Google onHub SwarmBox
Intel NUC
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Heterogeneous Environment

loT / Mobile Edge Computers
Devices (Cloudlet) Cloue

8% 1
@ O

0
71

[——]
N A
Limited Resources (. Compute Power ) More Available Resources
v
N
M k
Less workload Workload OIS BTN
Less resource guarantee

Higher latency
Risr (IR <: Latchis ' Less stable connections

Characteristics of loT /mobile, edge and cloud
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Accuracy and Processing Times Tradeoff

Adaptation o x X
Different algorithm and parameters x
affect the accuracy and processing
times.

Accuracy
X

Within the tradeoff space, select x

appropriate algorithm and 0

parameters to meet bounded 0 1

response time goal. Processing Times (normalize)
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Accuracy and Processing Times Tradeoff

o 95 ResNet-50] [ResNet-101 720p 1.02 [ 900p
S =) E D) o)
< 06 T “ — =%
> e -0 (108 -
8 90- o ¢
5 S oal® !
Q
< 85+ E I
LP 0.21 Parameter
o == change resolution, scale=1.02
|9 80 . 0.0 change scale, resolution=720p
T T T T T T T T T
0 20 40 60 80 0 200 400 600 800
Processing Time (ms) Processing Time (ms)
(a) Benchmarks for popular convolutional (b) Benchmarks for Viola Jones face
neural network (CNN) models. Data source: detection when changing different
https://github.com/jcjohnson/ parameters (see explanation on the next
cnn-benchmarks. slide).
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https://github.com/jcjohnson/cnn-benchmarks
https://github.com/jcjohnson/cnn-benchmarks

detectMultiScale in Viola-Jones (or CascadeClassifier)

The OpenCV implementation of
Viola-

Jones [Viola and Jones, 2001] has
three parameters,

= scale: how much the image
size is reduced at each image
scale.

= min_size: minimum
detect-able object size.

= min_neighbors: how many
neighbors each candidate
rectangle should have to
retain it.
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Exhaustive Search is Too Expensive

—e = Pareto boundary === tune min_size

@ tune min_neighbors —+= tune scale

o

@ 1007 221 s 80.5%6)

o 0.75 1 ATENE -y
(4 A

; 0.50 - ol .

8§ 0254 .em | il

3 0.00LE : ; :

< 1 10 100

Time (ms)

= scale: how much image size is reduced at each image scale.

= min_size: minimum detect-able object size.

= min_neighbors: how many neighbors each candidate rectangle
should have to retain it.
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detectMultiScale in Histogram of Oriented Gradients (HOG)

pub struct HogParams {

pub win_size: Size2i, {7 = S
pub block_size: Size2i,
pub block_stride: Size2i,

pub cell_size: Size2i,

L TR Y

pub nbins: c_int,

pub win_sigma: f6é4,

pub 12hys_threshold: f64,
pub gamma_correction: bool,
pub nlevels: usize,

pub hit_threshold: f64,

pub win_stride: Size2i,

pub padding: Size2i,

pub scale: f64,

pub group_threshold: c_int,
pub use_meanshift_grouping: bool,
pub final_ threshold: f64,

Image Source: learnopencv.com.
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learnopencv.com

Challenges in Adapting Computation

Goal
Adapt computation to different platforms

Challenges:

1. Large parameter space
= Previous approaches use random search or coordinate/greedy
approach
= We propose Bayesian Optimization (BO) for profiling
2. Heterogeneous capabilities (and not available when profiling)

= Profile transfer: refine existing Pareto-optimal points
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Bayesian Optimization 101

Bayesian optimization approximate black-box functions
functions and iteratively proposes new sample point in
parameter space. Effective for,

= Evaluating each sample is expensive.
= The objective is a black-box.

= The evaluation can be noisy.

- . VN0 Chocolate chip and
Gaining attraction beyond ML scope: R@UPQ cardamom c‘gokit
= CherryPick [Alipourfard et al., 2017] INGREDIENTS
. . ) Tpoca. Sfarch /2 Cup + 2 TeRP
finds the best cloud configurations B0nn et Ao V2op
. ) 06 3ugar /4 Cup + 15 TBSP.
for big data analytics. Caidaron 2ty
Flaxseed meal 15 TP
. . sonpom eour vaon
= Google optimize chocolate chip g v cip
3 ) ) xanfhan gum 1515
cookies recipes [Solnik et al., 2017]. o wr 519
oaking soda Ity
Chocdlafe Chips 1ovp.
ater 3/4 cup
saftiower ol 3/4 Ovp

with proxy
the large

Google , \%
o g e GLUTEN FREE GOAT
BAKERY & CAFE
DIRECTIONS
Comting all e dryngyedents except e chocdade chps,

n & bowt and mix well

In azwfner oon, combine all fhe et ingyedents, and fren
add fo the dry ingyedients and mix enavgh fo comoine.

Add fhe chocoinfe chips and fod n unfl st mixed Usng o

arge spoon, drop on parcinnent ined sheet pan and bake
at 350F for aoovt 12 minvtes.
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Bayesian Optimization (lllustrated)

........ ==Z _ objective fn (f()
observation (x) !
W _acquisition max

acaquisition function (u( )

n=3

new observation (x,)

posterior mean ((+))

posterior uncertainty
(u() zo() v

Acquisition function evaluates the utility of candidate
points for the next evaluation of f, balancing a high
objective (exploitation) and high uncertainty
(exploration) [Shahriari et al., 2016]

For two-objective optimization, utility
gain is based on additive-epsilon (top)
or hypervolume

(bottom) [Binois and Picheny, 2018]
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Bayesian Optimization For Performance Modeling

We use PESMO? [Hernandez-Lobato et al., 2016] and compare it with
two baselines: (1) greedy/coordinate search; (2) random search.

- Greedy Random

20 0.8 :
8 g 06- (1F

S5 3 041 b,

8« 0.2 J_figi"'.:.
<L 00 ? s BRI
1 10

Processing Time (ms)

BO evaluates 50 configurations and recommends 29 configurations as the Pareto-optimal boundary
(the blue line). Greedy and Random find sub-optimal Pareto configurations with a budget of 80
evaluations (the yellow line in each figure).

2A Python package based on Spearmint. It chooses evaluation points to maximally
reduce the entropy of the posterior distribution over the Pareto set.
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https://github.com/HIPS/Spearmint

fer (without re-running the entire BO)

We make the following observations:

= Accuracy remains for a given algorithm/parameter.
= Processing time order is preserved
= More expensive algorithms/parameters remain the same across
platforms.

= The “Pareto-optimal” is horizontally stretched /compressed.

ml m2 e ml + m2 = reference
% 100 v 8 >~ 08— o
0 7o (&)
£ 75 .| 6 7 @5 06 r
) 50 » & S0 F rd
qE) = ‘.( 4 '/ 8 n 0.44 -'I 'o
24 O ] o
.}: 0 ’/I‘ T T T O T T T T < EL-/ 02 J' I’: T T
0 2 46 8 0 2 46 8 1 10 100
Time (ms) (on reference machine) Time (ms)

(Left) Empirically, processing times follows a linear approximation. (Right) Stretched/compressed
profile. See paper for details.
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Conclusion and Acknowledgement




Swarm/loT has huge potentials but also challenges

= Network resource adaptation

= Addresses scarce and variable WAN bandwidth
= Tradeoff between application accuracy and data size demand

= Compute resource adaptation

= Addresses heterogeneous platforms and large parameter space
= Tradeoff between application accuracy and processing times

= Overall, a systematic and quantitative approach for adaptation
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Current (other) and Future Work

TerraSwarm Vision

TerraSwarm applications are characterized by their ability to
resources such as sensors and data from the cloud, aggregate and use that

information to make or aid decisions.

horizontal contract govemns actor interactions

Accessor ¢ Actor

GG runs on an
N accessor
NS host
Wi
swarmlet I
) - vertical contract governs
AN the interaction between the
7 “s..__ accessorand the service or thing
e Service Implementat 5
\ request response }l runs on a thlng,

o= == alocal server,

orin the cloud
swarm service or thing

(a) Accessor in a network of actors.

Actor Accessor Actor
“ -
| 2 II |
W
swarmlet host A Ve
¥
"
\
v
swarmlet host B i A
7N
2 N construct
response
Accessor

(b) Instantiate accessors on another host.

Work in progress with Marten and Andrés. Maybe checkout Marten’s dissertation talk

in the future :)
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Google Network Infrastructure
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Figure 4: Bandwidth Sharing on a Bottleneck Link.

Figure 5: BWE Architecture.

300

Z s

BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed
Computing [Kumar et al., 2015]

Move from Lagrangian to Eulerian (ask Edward if you don't know what
these words refer to).



Backup Slides.



Video Encoding Frames

@;: T I /@

oo
|I-frame P-frame B-frame |-frame

PC: https://en.wikipedia.org/wiki/Video_compression_picture_types

= |-frames are the least compressible but don't require other video
frames to decode. I-frames are further compressed with quantization.

= P-frames can use data from previous frames to decompress and are
more compressible than |-frames.

= B-frames can use both previous and forward frames for data
reference to get the highest amount of data compression (not an

option in live streaming).



Evaluation: Resource Allocation for Multiple Applications

— ~ — Pedestrian Detection Augmented Reality
5 15.01 5 15.01
Q_’(,? 7y Q_’a Pala
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(a) Resource Fairness (b) Utility Fairness



Bandwidth Fluctuations (Cellular)

Observed bandwidih ——

Mbit's

0 100 200 300 400 500 600

0 200 400 600 800 1000 1200

Time (s) Time (s)

(a) Ferry (c) Bus
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5 5
= 04 ot
ge I3
2 2
i 1 1
o 0

0 200 400 600 800 1000 1200

0 200 400 600 800 1000
Time (s)

(b) Metro (dotted line in tunnel)

Time (s)

(d) Tram

Riiser, Haakon, et al. "A comparison of quality scheduling in commercial adaptive HTTP streaming
solutions on a 3G network.” Proceedings of the 4th Workshop on Mobile Video. ACM, 2012.



Bandwidth Fluctuations (WiFi)

Delivery ratio

40 - - 40
20 I\ N 20
- |~

NVYLY AT
0 I 0
o 1 2 3 4 5 6
Days

Figure 4: Delivery ratio variation over a week for two randomly chosen 2.4 GHz links.

Delivery ratio

Days
Figure 5: Delivery ratio variation over a week for two randomly chosen 5 GHz links.

Biswas et al, Cisco Meraki, Large-scale Measurements of Wireless Network Behavior,
SIGCOMM'15. Two randomly chosen links.

Continue with the main slides.



Augmented Reality

= Training and testing data characteristics
= 1920x1080 resolution with 30 FPS
= training: 707 frames (23.5 seconds), testing: 1384 frames (46
seconds)
= Object Recognition
= Darknet: Open Source Neural Networks in C
= Developed by Joseph Redmon, "Do whatever you want with it"”
license
= It supports CPU/GPU
= In this work, | am using a pre-trained model with Coco dataset

= Other systems such as TensorFlow, Caffe would also work



I0U and F1

F1 is the harmonic mean of precision
Positive if intersection over union and recall:
(IOU) larger than 0.5.

P N
10U — Area of Intersection Y | True Positive | False Positive
Area of Union N | True Positive | False Positive

true positive

| |
: 1 i i =====7 Precision = —
: L] b ! all positive
B Lo ‘ true positive
inintuint - e : Recall = - POSTVE
all detection
(a) 10U=0.14 (b) IO0U=0.57 (c) IOU=0.82 5
Fl=— 1
Recall + Precision
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